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Abstract. The Particle Number Projected Generator Coordinate Method is formulated for the pairing
Hamiltonian in a detailed way in the projection after variation and the variation after projection methods.
The dependence of the wave functions on the generator coordinate is analyzed performing numerical
applications for the most relevant collective coordinates. The calculations reproduce the exact solution
in the weak, crossover and strong pairing regimes. The physical insight of the ansatz and its numerical
simplicity make this theory an excellent tool to study pairing correlations in complex situations and/or
involved Hamiltonians.

PACS. 74.20.Fg BCS theory and its development – 74.78.Na Mesoscopic and nanoscale systems

1 Introduction

The measurements of Black, Ralph and Tinkham [1,2] of
discrete level spectra and spectroscopic gaps in nanometer
Al isolated grains were interpreted as evidence of the su-
perconductivity phenomenon. To understand the physics
of such ultrasmall grains a great deal of theoretical effort
was devoted to study such systems starting from grand
canonical (BCS) and canonical ensembles [3] as well as
very sophisticated theories [4] of the pairing Hamiltonian,
see reference [5] for a review. Later on the exact solu-
tion [6] of this naive model Hamiltonian was rediscovered.
Some others studies treat the aspect of thermodynamic
properties [7,8] while others, see for example [9], the ques-
tion of persistence of pairing correlations above the BCS
critical temperature is addressed. More recently some an-
alytical results in special regimes have been obtained [10].
The main issue of all these studies is the proper descrip-
tion of the crossover between the few electron regime and
the bulk one. To analyse this crossover several properties
can be computed as a function of the mean electronic level
spacing d (or the number of electrons N) that character-
izes the transition from one regime to the other. One of the
findings of these studies was that the strong phase tran-
sition predicted in a grand canonical study was absent in
more advanced theories as well as in the exact solution.
In the BCS approach superconductivity is not possible for
all d (N) breaking down at a critical d value. This break
down is number parity dependent and indicates that quan-
tum fluctuations are not treated adequately by the BCS
wave function. The knowledge of the exact solution for the
simple-minded pairing Hamiltonian does not diminish im-
portance to the theoretical approximations developed for
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the study of that Hamiltonian, see [11] for a review. These
approximations are very general and allow the study of
more sophisticated Hamiltonians for which no exact solu-
tion exists. The use of exactly solvable Hamiltonians [12],
on the other hand, is very practical since it allows to check
the accuracy of different approximations in the limiting
cases represented by those Hamiltonians.

In a recent paper [13] we have proposed a new
approach to study superconductivity in finite systems,
namely the Generator Coordinate Method (GCM) [14],
based on particle number projected BCS wave functions
generated in a suitable way. In that paper the GCM ap-
proach was applied to superconducting grains described
by the Pairing Hamiltonian and it was shown to provide
an accurate description of these systems in perfect agree-
ment with the exact Richardson solution. The purpose of
this paper is two-fold, first, to present a detailed deriva-
tion of the relevant formula as well as the way to solve
the Hill-Wheeler (HW) equations and, second, to analyse
different generator coordinates in the context of pairing
correlations. The derivation presented is comprehensive
enough to allow for the application of the formalism to
other pairing Hamiltonians. Furthermore since our theory
is very general and not constrained by any requirement
can be applied to more complex systems. As a matter of
fact we have performed preliminary studies with the most
general pairing Hamiltonians proposed in [12] and the re-
sults [15] are of the same quality as the ones presented
in this investigation. Finite temperature effects are not
considered in the present study.

In Section 2 we derive the general formula of the GCM.
In Section 3 we discuss the different coordinates to be
used in the calculations. The convergence and other issues
concerning the numerical solution of the HW equations is
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analysed in Section 4. Finally in Section 5 the whole for-
malism is applied to study superconducting grains. The
paper ends with the Conclusions and some numerical as-
pects discussed in the Appendices A and B.

2 Theory

The pairing Hamiltonian used in most calculations is
given by

H =
N∑

k=1,ν=±
εkc†k,ν ck,ν − G

N∑

k,k′=1

c†k+c†k−ck′−ck′+ (1)

where k+ (k−) labels the single particle level (time re-
versed) with energies εk and ck, c†k destroys and creates
electrons in their respective states. The interaction con-
stant G is taken as λd with d the level spacing and λ the
BCS coupling constant whose value for Al is 0.224. The
single particle energies εk for simplicity take the values
εk = kd. The number N of electrons is equal to the number
of levels and in the ground state they form N/2 Cooper
pairs, so one works at half filling. This Hamiltonian al-
lows the discussion of the crossover between the strong-
coupling regime (d/∆̃ � 1) that represents large grains
and the weak-coupling regime (d/∆̃ � 1) for small grains,
in terms of the quantity d/∆̃ = 2sinh(1/λ)/N with ∆̃ the
bulk gap, or equivalently in terms of the number of elec-
trons N .

The simplest way to deal with pairing correlations is
provided by the BCS theory [16]. Its ansatz is given by
the mean field wave function

|BCS〉ϕ =
N∏

k>0

(
uk + vkeiϕc†k+c†k−

)
|−〉. (2)

The variational parameters vk are related to the proba-
bility to find two electrons in the level k. The parameters
uk are given by u2

k + v2
k = 1. The spontaneous particle

number symmetry breaking mechanism implicit in equa-
tion (2) enlarges the available variational Hilbert space
making the BCS approximation, in the case of large par-
ticle numbers, a very good one. The BCS state (2), on the
other hand, undergoes strong particle number fluctuations
and for finite systems like metal grains, the ansatz (2) is
unreliable and misses essential features. To correct this
failure it is necessary to develop the BCS formalism in a
canonical ensemble, where the particle number is fixed,
rather than in a grand-canonical one. The restoration of
the particle number in the BCS context was introduced by
Dietrich and Mang [17] in a nuclear structure context and
it was applied for the first time to superconducting grains
by von Delft and Braun [18,19]. The projection method
is based on the Anderson formulation of superconductiv-
ity [20] where projection onto good particle number is pre-

sented as an integration in the gauge variable ϕ,

|BCS〉N =
∫ 2π

0

dϕ

2π
eiNϕ

×
N∏

k

(
e−iϕ/2uk + eiϕ/2vkc†k+c†k−

)
|−〉. (3)

We assume the number of particles N to be even, the odd
case is considered in Appendix A.1. The formulation of the
particle number projection (PNP) can be done in several
ways [21]. Very compact formula are obtained in terms of
the residuum integrals [17] defined by

Rj1,··· ,jM
m =

1
2π

∫ 2π

0

dϕ e−i(M−2m)ϕ/2

×
N∏

k �=j1,··· ,jM

(
e−iϕ/2u2

k + eiϕ/2v2
k

)
. (4)

This definition holds for indices j1, · · · , jM such that
jk �= jp for all k and p. The integer M is simply a counter
of the j’s involved. In case that two or more indices are
equal we define the corresponding residuum integral as
zero. All expectation values can be easily calculated in
terms of the residuum integrals. As an example we evalu-
ate the matrix element N 〈BCS|BCS〉N , direct substitu-
tion of equation (3) provides

N 〈BCS|BCS〉N =
∫ 2π

0

dϕ

2π

N∏

k

(
e−iϕ/2u2

k+eiϕ/2v2
k

)
≡ R0

0.

(5)
In the same way the projected energy is given by

EN = N 〈BCS|H |BCS〉N
N 〈BCS|BCS〉N

= 2
N∑

j=1

(
εj − G

2

)
v2

j

Rj
1

R0
0

− G

N∑

j,k

ujvjukvk
Rjk

1

R0
0

. (6)

The PNP energy, as the BCS one, depends only on the
variational parameters uk, vk. Minimization with respect
to these parameters leads to a set of N coupled non-linear
equations

2(ε̂k + Λk)ukvk − ∆k(u2
k − v2

k) = 0. (7)

The quantities ε̂k, ∆k and Λk are defined by

ε̂k = (εk − G/2)
Rk

1

R0
0

, ∆k = G
∑

j

ujvj
Rkj

1

R0
0

(8)

Λk =
N∑

j

(
εj − G

2

)
v2

j

[
Rkj

2 − Rkj
1

R0
0

− Rj
1

R0
0

Rk
1 − Rk

0

R0
0

]

− G

2

N∑

j,l

ujvjulvl

[
Rkjl

2 − Rkjl
1

R0
0

− Rjl
1

R0
0

Rk
1 − Rk

0

R0
0

]
. (9)
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The set of equation (7) resembles the ordinary BCS equa-
tions. In that equations, Λk = 0 and ε̂k = ε−Gv2

k−µ. The
Lagrange multiplier µ takes care, on the average, of the
particle number conservation. Notice that in the projected
equations the fields Λk appear in addition. The solution
of equation (7) defines |BCS〉N . In the literature [18] this
is usually called Projected BCS (PBCS) theory. Details of
how the set of equation (7) is numerically solved are given
in Appendix A.2.

To include additional correlations we consider a gen-
eral superposition of different projected-BCS wave func-
tions,

|ΨN〉 =
∫

dξ f(ξ) |BCS(ξ)〉N

=
1
2π

∫
dξ dϕ f(ξ) eiNϕ

×
∏

k

(
e−iϕ/2uk(ξ)+eiϕ/2vk(ξ)c†k+c†k−

)
|−〉. (10)

The new wave function |ΨN 〉 is based on the Generator Co-
ordinate Method (GCM) developed by Hill and Wheeler
in Nuclear Physics [14]. It has been also used by Peierls,
Yoccoz and Thouless [22,23] among others to deal with
the restoration of symmetries in mean field approaches as
well as to deal with a variational approach to collective
motion. It has also provided a variational derivation of
the Random Phase Approximation [24]. The coordinate ξ
refers to any parameter on which the BCS states may de-
pend parametrically. In this way the superposition state
|ΨN 〉 takes care of the fluctuations associated to the pa-
rameter ξ. In principle, the variational quantities are the
weights f(ξ) and the occupancies uk(ξ), vk(ξ) and should
be determined invoking the variational principle. The final
equations, however, result in an integro-differential set of
equations very complicated to solve. In consequence some
assumptions about occupancies are needed in order to fa-
cilitate the numerical implementation. If we assume that
the quantities uk(ξ), vk(ξ) are known (see below) one deals
only with the problem of calculating the weights f(ξ). This
is accomplished by the Hill-Wheeler (HW) equation

∫
dξ

(
Hξξ′ − ENξξ′

)
f(ξ) = 0. (11)

H is the Hamiltonian overlap, defined by

Hξξ′ =N 〈BCS(ξ)|H |BCS(ξ′)〉N
= 2

∑

j

(
εj − G

2

)
vj(ξ)vj

(
ξ
′)

Rj
1(ξ, ξ

′
)

− G
∑

i,j,i�=j

ui

(
ξ
′)

vi(ξ)uj(ξ)vj

(
ξ
′)

Rij
1

(
ξ, ξ

′)

(12)

and N the norm overlap

Nξξ′ =N 〈BCS(ξ)|BCS (ξ′)〉N = R0
0

(
ξ, ξ

′)
. (13)

This equation is very similar to equation (5). The
residuum integrals have now been generalized by

Rj1,··· ,jM
m (ξ, ξ

′
) =

1
2π

∫ 2π

0

dϕ e−i(M−2m)ϕ/2

×
∏

k �=j1,··· ,jM

(
e−iϕ/2uk(ξ)uk(ξ

′
) + eiϕ/2vk(ξ)vk(ξ

′
)
)

. (14)

In Appendix B we discuss the way to calculate these inte-
grals and the Hamiltonian overlap of equation (12). It is
important to notice that the solution of the HW equation
provides not only the ground state but also the low-lying
collective states.

As we mentioned above, in the HW equation the quan-
tities uk(ξ), vk(ξ) are supposed to be determined before-
hand. They are usually fixed by the way the projected
wave function |BCS(ξ)〉N is calculated, namely, whether
|BCS(ξ)〉N is determined by projection after variation
(PAV) or variation after projection (VAP). In the former
(PAV), the occupancies are determined by the symmetry-
violating wave function |BCS〉, i.e., by solving the ordi-
nary BCS equations. In the VAP case the occupancies are
given by the solution of the variational equations equa-
tion (7). In the BCS framework the VAP approach is
known as PBCS. Obviously the VAP method is more in-
volved but it is a fully self-consistent method that provides
better results. We shall denote the first method GCMPAV
and the second one GCMVAP.

3 Selection of the generator coordinate

The generator coordinate ξ is quite general and its selec-
tion is motivated by the physical problem. The BCS wave
functions depend parametrically on the generator coor-
dinate, its selection is therefore strongly related to the
ways we have to characterize the wave function. Though
there are many ways to choose the generator coordinate,
we think that for the BCS case there are three relevant
ones: the gap parameter ∆, the Lagrange parameter µ as-
sociated with the particle number of the BCS wave func-
tion and ∆N2 = 〈BCS|N̂2|BCS〉 − 〈BCS|N̂ |BCS〉2, the
fluctuations on the number of particles of the BCS wave
function.

Instead of using directly the gap parameter as a co-
ordinate it is numerically easier to generate BCS w.f.’s
with different gap parameters by solving the correspond-
ing BCS (PBCS) equations for different values Gtrial of
the strength constant G. This method is easy to imple-
ment and very efficient. The second method is the sim-
plest one. Now the generator coordinate is the chemical
potential µ which in the ordinary BCS equations is used
as Lagrange multiplier to fix the mean value of the particle
number in the grand-canonical ensemble. In our case we
solve the BCS equations for fixed µ and the use of different
µ values allows to generate wave functions |BCS(µ)〉 with
different average particle number. The fact that |BCS(µ)〉
does not have on the average the right particle number
does not matter since later on we project on the right
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particle number. In this case one is looking for the fluctu-
ations in the position of the Fermi level.

The last method, finally, considers fluctuations around
the uncertainty in the particle number ∆N2. Now it is
necessary to add a constraint to fix a given value of
∆N2. This is done by using the modified Hamiltonian
H ′ = H − µN − µ2∆N2, where the parameter µ2 guar-
antees that the constraint is fulfilled. In principle we have
set up six variational methods (PAV and VAP versions
of each coordinate) but only five are feasible, because the
VAP version of µ (by construction) is not possible. Al-
though the ultimate test of the quality of the selection
of the generator coordinate will be the eigenstates of the
HW equation it is interesting to have a look on the Hilbert
space generated by the different coordinates. The diagonal
elements of the matrix Hξξ/Nξξ of the HW matrix, equa-
tion (11), are the projected total energies EN (ξ). This
quantity is related to the condensation energy (CE) by
Econ(ξ) = EN (ξ) − EF with EF the uncorrelated energy
of the Fermi sea, i.e., EF = 2

∑
j εj − GN/2. Though, as

mentioned above, we have five ways to generate w.f. de-
pending parametrically on ξ we shall concentrate in this
section on the three PAV cases corresponding to the three
different coordinates under study. In Figure 1 we display
Econ(ξ) as a function of the corresponding generator coor-
dinate ξ and for different particle (level) numbers to cover
the full range from weak to strong pairing regimes. For
simplicity we plot only the curves for grains with an even
number of particles. Let us first discuss the coordinate
Gtrial. It is obvious that, for each number of particles N ,
a critical value Gc(N) of Gtrial exists such that no su-
perconducting solution of the system is found below it. In
panel a we show the CE versus Gtrial −Gc(N). We find a
parabolic behavior with the vertex moving to larger values
of Gtrial−Gc(N) as the particle number decreases (as one
would expect). The curves get softer with decreasing par-
ticle number with the curve N = 20 being specially soft.
We also find that the value of the CE in the minimum is
larger (in absolute value) as the particle number increases
(as one also would expect).

In panel b the quantity Econ(µ) is plotted against
µ − µBCS(N), µBCS(N) being the chemical potential
of the BCS equation for the corresponding case. Be-
cause of the particle-hole symmetry of the model the sub-
traction of µBCS(N) provides symmetric curves around
µ−µBCS(N) = 0 1. For large N the solutions are parabola
like curves which soften with decreasing particle number.
For N ≥ 40 we find superconducting solutions for all µ
values. This is not the case for N = 20 where for certain
µ intervals we do not obtain any solution for the BCS
equation, see below for more details. This is not surpris-
ing because the standard selfconsistent BCS equation does

1 It is important to notice that in this case the num-
bers 20, 40, etc. correspond only to the number of levels
and not to the number of particles of |BCS(µ)〉. Since we
work without constraint on the particle number in general
〈BCS(µ)|N̂ |BCS(µ)〉 �= N . On the other hand since we
are projecting on the particle number the wave functions
|BCS(µ)〉N correspond to a system with N particles.

Fig. 1. Projected condensation energies, in units of the bulk
gap, as functions of the different generator coordinates in the
PAV approach.

not provide a correlated solution in this case, see below.
Lastly in panel c Econ(∆N2) is plotted against ∆N2. Here
we also obtain a parabolic behavior similar to the case a)
with the difference that the minima shifted to large ∆N2

correspond to the large particle numbers. The CE gets
softer with larger particle number as one would expect.

It is clear that the energy minima of the different co-
ordinates provide an approximation to an unconstrained
VAP calculation. In Table 1 we have summarized the min-
ima of the parabola as well as the VAP values and the
exact ones. We find that all three coordinates do a good
job for large particle numbers and that big differences ap-
pear for small particle numbers, i.e., in the weakly corre-
lated regime. We find that in general and at this level the



M.A. Fernández and J.L. Egido: Pairing correlations in finite systems 309

Table 1. Condensation energies, in units of ∆̃, predicted by
PAV, VAP and exact calculations.

N 20 40 86 172 400
Gtrial −1.7716 −1.8194 −1.9053 −2.3566 −3.4192

µ −0.7864 −0.9272 −1.4925 −2.0392 −3.4625
∆N2 −1.1438 −1.3654 −1.6906 −2.2227 −3.5564
VAP −2.0625 −2.2441 −2.4015 −2.5428 −3.6551
exact −2.2026 −2.5284 −2.9403 −3.5322 −4.8891

coordinate Gtrial is the most effective followed by ∆N2

and µ. Of course this does not mean very much since the
configuration mixing calculations will change these results.

Let’s now analyse the wave functions generated with
the different coordinates. To a given value of a coordi-
nate, let say ξ0, corresponds a wave function |BCS(ξ0 >.
A simple way to characterize the physical content of
this wave function is by the associated gap parameter
∆(ξ0) = G

∑
k uk(ξ0)vk(ξ0). In Figure 2 we have repre-

sented the gap parameter ∆(ξ) associated to each wave
function as a function of the coordinate ξ used to gener-
ate it. In panel a we show the results for Gtrial. Of course
the G entering into ∆ is the one of the original Hamil-
tonian, see equation (1), independently of the Gtrial used
in the calculations. Taking into account the expression of
∆ we expect, in first order, a linear behavior with Gtrial

and this is what we obtain. In general a very broad range
of gap parameters is covered, which is the reason why
the coordinate Gtrial can be considered equivalent to the
gap parameter ∆. The case of the coordinate µ is con-
sidered in panel b, where we represent the corresponding
gap parameter as a function of µ − µN

BCS. We find an os-
cillating behavior of ∆ with µ due to the symmetry of
the model. Notice that the scale of the y-axis depends
on the particle number considered, see the figure caption.
For µ = kd, i.e., at the single particle energies εk, we find
maxima and for µ = k(d + 1/2) minima. The period and
amplitude of the oscillations decrease with growing parti-
cle number because in this model d ∼ 1/N . For N ≥ 40
we obtain superconducting solutions for all µ values, in
particular for µ = µBCS , i.e., for the selfconsistent BCS
equation. For N = 20, however, we observe that at and
around µ = k(d + 1/2) we do not obtain correlated wave
functions. As mentioned above this behavior is in agree-
ment with the fact that the selfconsistent BCS solution
does not have correlated solutions in this case. The sit-
uation is further illustrated in Figure 3 for the N = 20
case. In the weak pairing regime we only find solutions for
µ values corresponding to the hatched regions around a
given level. In the region around the level k, the number
of particles of the BCS w.f., i.e., the expectation value
〈BCS(µ)|N̂ |BCS(µ)〉, varies in a continuous way from
2(k − 1) to 2k. For example for the case of N = 20, i.e.
k = 10, the BCS w.f. around the level 10 have average
numbers of particles ranging from 18 to 20. In general
from these w.f.’s it is always possible to project to 20 par-
ticles. In the regions between the hatched regions no BCS
solution is found but only the Hartree-Fock (HF) one. The

Fig. 2. Dependence of the order parameter ∆ on the gener-
ator coordinates Gtrial, µ and ∆N2. In panel (b) the y-axis
scale applies only for N = 20, for N = 40 the y-axis covers
the interval 0.6–1.4 and for N = 86, 172 and 400 the interval
0.9–1.1.

numbers of particles are obviously integer numbers, in the
example displayed these integers are 16, 18, 20 and 22. To
project to 20 particles from these HF w.f. is only possible
for 20, in the other cases the w.f. is zero. This fact explains
the curve corresponding to N = 20 in Figure 1. From all
regions where no BCS solution is found only the one be-
tween k = 10 and k = 11, corresponding to a HF solution
with 20 electrons with zero condensation energy, survives.
In Figure 1 this region is represented by the straight line
around µ = µBCS. For N ≥ 40 this is not the case and we
always find BCS solutions. The hatched regions of Fig-
ure 3 correspond in this case to strong correlations and
the white regions to weak ones.
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Fig. 3. Sketch of the regions of weak and strong pairing for
N = 20. The numbers on the right hand side correspond to
the labels of the levels while the ones on the left hand side to
the average number of particles of the BCS w.f. at the corre-
sponding µ.

Finally, in panel c the gap parameters corresponding to
the ∆N2 generator coordinate are plotted. The behavior
is again linear, as for the coordinate Gtrial, but the range
of the gap parameters involved in each wave function is
the opposite one. In this case we obtain for small parti-
cle numbers a much larger range than for large particle
numbers.

4 Numerical solution of the Hill-Wheeler
equation

For our purposes solving the HW equation, equation (11),
is equivalent to the diagonalization of the Hamilto-
nian in the nonorthogonal basis of the generator states
|BCS(ξ)〉N . The usual procedure to deal with this equa-
tion [21] involves two diagonalizations. In a first step, the
norm overlap Nξξ′ is diagonalized

∫
dξ′Nξξ′uk(ξ′) = nkuk(ξ), (15)

with the functions uk(ξ) forming a complete orthonormal
set in the space of the weights f(ξ). Its eigenvalues are
never negative, nk ≥ 0, because the matrix N is definite
positive. We shall keep the uk(ξ) with nonzero eigenvalues
corresponding to the linearly independent states. In prac-
tice and due to numerical reasons we restrict the uk(ξ) to
those with eigenvalues larger than a tolerance ε. For each
of these functions there exist states |k〉,

|k〉 =
1√
nk

∫
dξuk(ξ)|BCS(ξ)〉N , (16)

called the natural states, which span a collective subspace
HC . In a second step the Hamiltonian Ĥ is diagonalized

in this space
∑

k′

〈
k|Ĥ |k′

〉
gk′ = Egk (17)

with

〈k|Ĥ |k′〉 =
1√

nknk′

∫∫
dξdξ′u∗

k(ξ)Hξξ′uk′(ξ′). (18)

The HW equations provide a set of wave functions,

|Ψσ
N 〉 =

∑

k,nk �=0

gσ
k |k〉, (19)

and energies Eσ labeled by the index σ, the lowest one cor-
responding to the ground state and the others to excited
states. In this work we are only interested in the ground
state. Taking into account equations (10) and (19) one
obtains

f(ξ) =
∑

k

gk√
nk

uk(ξ). (20)

Since the wave functions |BCS(ξ)〉N are not orthogonal,
the weights f(ξ) cannot be interpreted as the probability
amplitude to find the state |BCS(ξ)〉N in |ΨN〉. It can be
shown, however, that the functions

G(ξ) =
∑

k,nk �=0

gkuk(ξ) (21)

are orthogonal and that they can be interpreted as prob-
ability amplitudes.

For numerical purposes all the expressions above in-
volving integrals have to be replaced by sums discretizing
the space ξ. In this form one deals with matrix equations
easier to handle. The question that immediately arises is
how to determine the optimal ξ-mesh to be used in the
calculation. The border values of ξ are determined by en-
ergy arguments since the probability of mixing high-lying
states is very small. The ξ-coordinate intervals used in the
calculations are given in Table 2. The calculations depend
furthermore on the mesh step used in the discretization.
This parameter is chosen as to optimize the calculations,
i.e., we take the largest mesh that includes all states with
relevant information. This parameter is also related to the
required accuracy. In the calculations performed we have
not attempted to reproduce the exact results up to an un-
usual accuracy. In Figure 4 the convergence of the conden-
sation energy, as a function of the number of mesh points
used in the calculations, is shown for different numbers
of particles and for the coordinates G, µ and ∆N2. We
observe that the number of mesh points needed for con-
vergence depends on the ξ-coordinate and on the number
of particles. The coordinate Gtrial, see top panel, provides
the best convergence of the three calculations. For large
particle numbers a very good convergence for relatively
few mesh points is found. For small numbers of particle
one has to go to larger mesh points to find the plateau. For
the µ coordinate the situation is the reverse one, i.e., one
finds earlier convergence for small numbers of particles.
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Table 2. Initial and final values of the generator coordinates
used in the calculations.

N 20 40 86 172 400

Gi(meV) 0.44 0.18 0.07 0.03 0.01
Gf (meV) 0.80 0.30 0.17 0.06 0.04
µi(meV) −3.00 −2.00 −2.00 −1.00 −1.00
µf (meV) 3.00 2.00 2.00 1.00 1.00

∆N2
i 0.00 0.00 0.00 0.00 0.00

∆N2
f 8.00 12.00 16.00 16.00 32.00

Fig. 4. The condensation energy in units of ∆̃ for the three
coordinates as a function of the number of mesh points used in
the calculations. The energy scales correspond to the N = 20
case, the other curves have been shifted in order to make the
figure readable. The shifts are 0.28, 0.58, 1.02 and 2.48 for 40,
86, 172 and 400 particles respectively.

Finally, the situation for ∆N2 is something in between
the two former cases. We find that to reach convergence
in energy 80 mesh points are sufficient for all coordinates.
This is the number which we will use in all following nu-
merical applications.

A further check concerning the convergence is the num-
ber of natural states kept in the calculations. Since many
of these states are linearly dependent some natural states
|k〉 will have a vanishing norm and must be excluded.
In the calculation only those natural states with a norm
larger than a given tolerance ε are kept. For a given tol-
erance we take as many states |k〉 as needed to reach a
good plateau. Now we analyze the energy convergence as a
function of the number of natural states kept in the diago-
nalization of the HW equation or equivalently of the toler-
ance of the calculations. This is shown in Figure 5 for the

Fig. 5. Same as Figure 4 but as function of the tolerance ε.

three coordinates and for grains with different numbers
of particles. In the µ and ∆N2 coordinates we find that
for tolerances smaller than 10−10 linear dependent states
are introduced in the calculations providing unrealistic en-
ergy values. The interesting point is the nice plateau found
for larger tolerances. The tolerance of 10−10 corresponds,
typically, to around 15 linearly independent states. The
coordinate G is in this respect somewhat different. One
observes that for tolerances of up to 10−15 one still gets
linearly independent states, which obviously correspond to
highly excited states that do not affect the energy of the
ground state. This tolerance typically amounts to 20 lin-
early independent states. From this respect we conclude
that if one is interested in excited states the coordinate G
is more effective than the other ones.

The diagonalization of the HW equation in the case of
the µ coordinate requires some comments. As mentioned
above in the weak pairing regime, for N = 20 for exam-
ple, and for several µ intervals one does not find supercon-
ducting solutions. This circumstance, as explained above,
shows up as “missing points” in the CE curves. These dis-
continuities do not affect however the solution of the HW
equations, since these points have norm zero and do no
mix with the other states.

5 Application to superconducting grains

In this section we present a systematic study of properties
of superconducting grains. The results of the GCM calcu-
lation of different quantities are compared with the PBCS
approximation and the exact Richardson solution.
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5.1 Ground state condensation energies

Condensation energies characterize the presence of pairing
correlations. The crossover between superconducting and
fluctuation dominated regimes can be described through
this quantity.

As in the former cases the condensation energy Econ is
defined as the difference between the total energy in the
corresponding approximation and the energy of the uncor-
related Fermi sea. For example in the GCM approaches it
is given by Econ = Eσ=0 − EF , see equation (19) and be-
low. This quantity is displayed in Figure 6 for even grains
(up to 600 electrons) and odd grains (up to 601 electrons)
as a function of the particle number N . In both plots we
give numerical results for the approximations discussed
above, BCS, PBCS and the GCMPAV and GCMVAP
approaches. The GCMPAV results are presented for the
coordinates Gtrial, µ and ∆N2 and the GCMVAP for
Gtrial and ∆N2. The grand-canonical (BCS) calculation
of Econ predicts vanishing correlations in the few-electron
regime in the even and odd systems. The PBCS conden-
sation energies, on the other hand, though always neg-
ative predict an unrealistic sharp crossover between the
fluctuation dominated regime and the bulk which is more
pronounced in odd grains. This artifact is not present nei-
ther in the GCM approaches nor in the exact calcula-
tions. The simpler GCMPAV approaches already predict
a smooth crossover for odd and even grains. The more in-
volved GCMVAP approaches not only predict a smooth
crossover but their predictions coincide with the exact re-
sults. Concerning the GCMPAV calculations we find that
the µ coordinate is the most effective of all of them fol-
lowed by the ∆N2 one. Paradoxically the calculation with
the µ coordinate is the simplest one from the numerical
point of view.

The reason why the µ coordinate is the most successful
one is probably due to the fact that using this coordinate
one has the right inertia parameter for the rotations in the
gauge space associated with the operator N̂ . As a matter
of fact this was demonstrated by Peierls and Thouless [23]
in the context of the translational invariance and a PAV
approach by the double projection technique (see Eq. (10)
above). In this work they show that the right inertia pa-
rameter of the collective motion associated with the linear
momentum operator P̂ (N̂ in our case) is obtained when
the GCM coordinates are the position (ϕ in our case) and
the velocity (µ in our case). That means the dynamics
associated with equation (11) has the right inertial pa-
rameter. In a VAP approach one always obtain the right
mass parameter [21].

5.2 Pairing correlations

In a canonical ensemble the BCS order parameter is iden-
tically zero. For this reason it is necessary to define an-
other quantity to characterize pair correlations in a state
of fixed numbers of electrons. We choose the pairing pa-

Fig. 6. Condensation energies versus the number of particles in
different approximations and the exact results. Upper (lower)
panel for even (odd) systems.

rameter used in reference [18]

∆b = G
∑

k

Ck (22)

where the subindex b indicates the number parity of the
grain. The quantities Ck’s are defined by

C2
k =

〈
c†k+ck+c†k−ck−

〉
−

〈
c†k+ck+

〉〈
c†k−ck−

〉
(23)

and form a set of correlators which measure the fluctua-
tions in the occupation numbers. The expectation values
〈 〉 are to be calculated with the wave functions of the
corresponding approach using the formula developed in
Appendices A and B. In an uncorrelated or in a blocked
state one has Ck = 0. In the grand-canonical case the Ck’s
reduce to Ck = ukvk and ∆b coincides with the usual su-
perconducting order parameter.

In Figure 7 we show our results for the pairing pa-
rameter in units of ∆̃ for even (upper panel) and odd
(lower panel) systems respectively. As we can see in both
plots the sharp transition occurring in the BCS and PBCS
methods is absent in the GCM approaches as well as in
the exact solution. The peculiar behaviors of ∆b in the
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Fig. 7. The gap parameter ∆b for the different calculations as
a function of the number of electrons for even and odd grains.
For particle numbers smaller than those shown in the BCS plot
the BCS gap parameter goes sharply to zero.

exact and GCM approximations before and after the BCS
breakdown are related to the change of a pairing delocal-
ized in energy (weak pairing regime) to a localized one
(strong pairing regime). The rough decrease of ∆b with N
is connected to the special feature of the model, for which
the constant G of equation (22) is inverse proportional to
the number of electrons. The fact that ∆b converges mono-
tonically to the final value ∆̃, in the even case from above
and in the odd one from below, is due to the blocking ef-
fect. In these plots we observe again that the GCMVAP
approaches provide solutions closer to the exact one than
the GCMPAV approaches.

5.3 Collective wave functions

We now look at the structure of the GCM states in the
space of the collective parameter ξ. The collective weights
f(ξ) can not be interpreted as probability amplitudes be-
cause the generating states |BCS(ξ)〉N are not, in general,
orthogonal to each other. The amplitudes G(ξ) of equa-
tion (21), on the other hand, play the role of “collective
wave functions”, they are orthogonal and their modules
squared have the meaning of a probability.

Fig. 8. The projected energies EN(G) versus G in the
GCMPAV (thin continuous lines) and GCMVAP (thick con-
tinuous lines) approaches for even systems. The collective wave
functions |G(G)|2 for the GCMPAV (thin dashed lines) and the
GCMVAP (thick dashed lines) approaches in arbitrary units.
The vertical scale applies for EN(G), the minimum of EN(G)
in each approach has been set equal to zero. The top scale
applies only for the top panel.

The quantities |G(ξ)|2 are plotted in Figures 8, 9 and
10 as a function of the parameters G, µ and ∆N2, re-
spectively. The behavior of |G(ξ)|2 as a function of ξ in-
dicates which are the most relevant components of the
states |ΨN (ξ)〉 in terms of the parameter ξ. To guide the
eye we have also plotted in these figures the projected en-
ergy EN (ξ) of equation (6). For simplicity we restrict our
discussion to even systems. In Figure 8 we represent these
quantities for the coordinate Gtrial in the GCMPAV and
GCMVAP approaches. Since the wave functions of both
approaches do not differ qualitatively we shall discuss both
cases together. The fact that the projected energies are
lower in the PAV than in the VAP approach for a given
Gtrial −Gc is due to the fact that Gc is almost zero for all
particle numbers in the VAP approach while it varies con-
siderably with the particle number for the PAV case, see
Table 2. We find broad potential energy curves for small
particle numbers and narrower ones with increasing N . In-
terestingly the potential energy curves for the GCMPAV
and GCMVAP approaches are rather different for small
particle numbers and they become similar for the large
ones. Concerning the wave functions for N = 20 we ob-
tain very broad distributions corresponding to a situation
of weak pairing dominated by fluctuations in the order pa-
rameter ∆, see also panel a) of Figure 2. For N ∼ 40 we
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Fig. 9. The projected energies EN(µ) (continuous lines) and
the collective wave functions |G(µ)|2 (dashed lines) versus µ.
The vertical scale applies for EN (µ), the minimum of EN(µ)
has been set equal to zero. |G(µ)|2 is in arbitrary units. The
top scale applies only for the top panel.

find that the wave functions are not that extended any-
more but they still present a two peak distribution, wit
the first peak around the non-superconducting solution
and the other around a superconducting one. For larger
particle numbers (N ∼ 86, 172, 400) a one peak distribu-
tion emerges with the width of the peak getting smaller
for increasing particle number. Looking at Figure 2a we
see that at large N the distribution peaks around the wave
function with a gap very close to the bulk one.

The results for the µ coordinate are presented in Fig-
ure 9. For N = 20, in the weak pairing region, we obtain
a flat potential which shape corresponds to the physics
already discussed in relation with Figure 3. The collec-
tive wave function, also according to the discussion of
Figures 2b and 3, displays an oscillating behavior with
maxima around µ = kd and minima (zeroes) around
µ = k(d + 1/2). The height of the maxima decreases con-
siderably for k values different from 10 and 11, i.e., the
collective wave function is mainly formed by the HF solu-
tion around the Fermi level and the N = 20 components of
the BCS solution of the levels above and below the Fermi
level. For N = 40 the weak pairing regime persists and the
wave function displays a structure similar to the N = 20
case but with the strength much more concentrated owing
to the fact that the level spacing decreases with increasing
number of particles. For N = 86 the two peak structure is
just a reminiscence of the weak pairing situation and for
N = 172 and 400 a one peak structure emerges indicating

Fig. 10. The same as in Figure 8 but for the parameter ∆N2.

the strong pairing situation. The potential energy curves
get steeper with increasing N and the localization of the
peak around µN

BCS sharpens in the same way. As one can
see in Figure 2b the range of the ∆ parameter covered by
the wave functions diminishes with increasing N .

Lastly we discuss the ∆N2 coordinate in Figure 10.
The potential energy curves are easy to understand. In the
small particle number limit the BCS solution does not pro-
vide a superconducting solution and therefore 〈∆N2〉 = 0.
On the other hand the BCS approximation provides the
exact solution in the bulk limit, i.e. there 〈∆N2〉 � 1. Ac-
cordingly we expect minima in the projected energies at
small ∆N2 for low N and at large ∆N2 for large N . The
potential energy curves get softer with growing N because
for increasing ∆N2 it is energetically easier to change this
value. As it should be the potential energy curve for the
GCMVAP approach lies below the GCMPAV one. Con-
cerning the collective wave functions, their behaviors cor-
respond to the shape of the potentials. For N ≤ 86 there
is a finite probability of having an uncorrelated HF solu-
tion as a component of the collective wave functions and
only for N ≥ 172 we obtain Wigner-like functions with
zero amplitude for the HF component. The range of ∆’s
covered by the wave functions can be read from Figure 2c.

Finally, we would like to mention that a very detailed
comparison of our wave functions and the exact ones has
been made in reference [13]. We find that the physical
content of the GCMPAV wave functions and the exact
ones is identical.
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6 Conclusions

In this paper we have presented a detailed formulation
of the particle number projected Generator Coordinate
Method. We have discussed two different coordinates to
generate wave functions for the variation after projection
method and three for the projection after variation one.
The theory has been applied to study superconducting
grains with a pairing Hamiltonian. We have shown that
the GCMVAP calculations with both proposed coordi-
nates reproduce the exact results in the weak, crossover
and bulk regimes. Concerning the GCMPAV calculations
we find that all three proposed coordinates, in spite of not
being able to reproduce the exact results, describe qualita-
tively the correct physics washing out the phase transition
found in the BCS and the PBCS approaches. Concerning
the degree of accuracy we find that the µ coordinate is the
most effective of all the three followed by the ∆N2 one.

We think that these results are rather general and ap-
ply to many more complex Hamiltonians than the naive
pairing one considered here. Since the GCM ansatz in-
cludes explicitly fluctuations in the wave function it is
very appropriate to deal with finite systems where phase
transitions may take place. The method, contrary to other
approximations, applies equally well to systems with very
few or very large particle number. On the other hand the
GCM ansatz is very versatile to be adapted to other physi-
cal situations by considering additional coordinates to the
ones discussed in this work.

This work has been supported in part by DGI, Ministerio
de Ciencia y Tecnoloǵıa, Spain, under Project FIS2004-06697.
M.A.F. acknowledges a scholarship of the Programa de Forma-
cion del Profesorado Universitario (Ref. AP2002-0015).

Appendix A: Peculiarities of the PBCS
approximation

In this appendix we discuss some numerical aspects of the
solution of the equations used in this article.

A.1 Odd particle number case

The PBCS and HW methods can be extended to systems
with an odd number of particles by blocking one of the
available states. A system with an odd particle number is
described by the state

|BCS〉lN+1 =
∫ 2π

0

dϕ

2π
eiNϕc†l

×
∏

k �=l

(
e−iϕ/2uk + eiϕ/2vkc†k+c†k−

)
|−〉 (24)

with N an even number and l the blocked state. The
residuum integral of equation (4) now looks like

lRj1,··· ,jM
m =

1
2π

∫ 2π

0

dϕ e−i(M−2m)ϕ/2

×
N∏

k �=j1,··· ,jM ,l

(
e−iϕ/2u2

k + eiϕ/2v2
k

)
, (25)

in an obvious notation. As before all expectation values
can easily be calculated in terms of the residuum integrals,
for example the norm matrix element is given by

N+1〈BCS|BCS〉N+1 = lR
0

0, (26)

and the projected energy by

El
N+1 = 2

N∑

j( �=l)=1

(
εj − G

2

)
v2

j

lRj
1

lR0
0

− G
N∑

j,k �=l

ujvjukvk

lRjk
1

lR0
0

+ εl.

The superindex is somewhat superfluous and it can be
suppressed. Blocking different states l one obtains dif-
ferent excited states. The lowest of these energies corre-
sponds to the ground state of the system with an odd
particle number. The PBCS and HW variational equa-
tions obtained with theses states can be guessed without
further calculations: In all sums and products in the equa-
tions presented for even systems the term corresponding
to the blocked state l has to be excluded. In the same way
one can write down states with 3, 5,... etc. blocked states.

A.2 Numerical solution of the PBCS equations

The set of coupled non-linear equation (7) is usually solved
by an iterative procedure. In order to speed up such proce-
dure it is convenient to introduce the variable χk through
the relation

u2
k =

χk

1 + χk
, v2

k =
1

1 + χk
, (27)

where the normalization condition u2
k + v2

k = 1 has been
taken into account by construction. In terms of χk the
variational equations look like

(ε̂k + Λk)χ
1/2
k − ∆k (χk − 1) = 0. (28)

The additional transformation

χk = exp θk (29)

allows to isolate the new variable in terms of the fields
ε̂k, Λk and ∆k

θk = 2 sinh−1

(
ε̂k + Λk

2∆k

)
. (30)
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The right hand side of this equation does not depend ex-
plicitly on θk because the fields ε̂k, Λk and ∆k are indepen-
dent of θk. This fact is very useful to solve equation (30)
by numerical iteration. We start with a guess of θk (for
instance the grand-canonical solution) and solve (30) un-
til the convergence of the energy, to a given tolerance, has
been reached.

The variational equation (30) involve the computation
of the residuum integrals Rν1...νM

n . These integrals can be
calculated analytically using the existing closed analytical
expression [25]. Their evaluation, however, requires the
addition of many terms making the whole computation
a very time consuming approach. As the integrals must
be computed many times for different sets of uk, vk, the
numerical solution of (30) in an efficient way requires the
computation of the residuum integrals in a fast and ac-
curate way. For this purpose we have implemented Fast
Fourier Transform routines to evaluate the integrals re-
ducing the number of different integrals as much as possi-
ble to minimize the computational effort. For this purpose
the following two identities can be used. The first one was
found by Dietrich et al. [17]. It can be shown that the
residuum integrals satisfy the following recursion relation

Rj1,··· ,jM
m = u2

kRj1,...,jM ,k
m + v2

kRj1,...,jM ,k
m+1 . (31)

The knowledge of two residuum integrals allows to calcu-
late a different one. This reduces the number of numerical
integrations by one third. A second, more powerful rela-
tion was found by Ma and Rasmussen [26],

Rj1,...,jM
m = δm,MR0

0

∏

j=j1,...,jM

1
v2

j

+ (−)m
∑

j=j1,...,jM

v
2(M−m−1)
j u2m

j

×
⎛

⎝
∏

k=j1,...,jM ( �=j)

1
v2

j − v2
k

⎞

⎠Rj
0. (32)

This formula allows to calculate all residuum integrals if
the integrals R0

0 and Rj
0 are known. This relation reduces

to N + 1 the overall number of numerical integrations for
a given set of vj ’s and uj ’s.

In the PBCS one only needs Ma’s relation to calculate
three terms: Rjk

1 ,Rjkl
2 − Rjkl

1 and Rjk
2 − Rjk

1 . If R0
0 and

Rj
0 are known, Rj

1 can be obtained by Dietrich’s recursion
relation. First we consider Rjk

m with m = 1 or m = 2. Ma
and Rasmussen’s formula reduces to

Rjk
m = δm,2

R0

v2
j v2

k

+ (−)m
ζm
j v2

j Rj
0 − ζm

k v2
kRk

0

v2
j − v2

k

(33)

where we have used the identity ζj = 1
v2

j
−1. The difference

Rjk
2 − Rjk

1 can be written in a simplified way as follows

Rjk
2 − Rjk

1 =
R0

v2
j v2

k

− Rj
0(v

2
j − 1)

v2
j (v2

j − v2
k)

+
Rk

0(v2
k − 1)

v2
k(v2

j − v2
k)

. (34)

The calculation of Rjkl
2 − Rjkl

1 is a bit more complicated,
the result is

Rjkl
2 − Rjkl

1 =
u4

j + u2
jv

2
j Rj

0

(v2
j − v2

k)(v2
j − v2

l )
+

u4
k + u2

kv2
kRk

0

(v2
k − v2

j )(v2
k − v2

l )

+
u4

l + u2
l v

2
l Rl

0

(v2
l − v2

j )(v2
l − v2

k)
. (35)

Since the indices of the residuum integrals can be per-
muted, Rjkl

2 −Rjkl
1 can be expressed for all possible com-

binations of vj , vk, vl by the equations above.

Appendix B: The generalized residuum
integrals

The Hamiltonian overlap Hξξ′ , equation (12), can be cal-
culated using the generalized Dietrich’s recursion relation,

Rj1···jM
m (ξ, ξ′) = uk(ξ)uk(ξ′)Rj1···jM ,k

m (ξ, ξ′)

+ vk(ξ)vk(ξ′)Rj1···jM ,k
m+1 (ξ, ξ′). (36)

The residuum integrals Ri
1, R

ij
1 needed to calculate Hξξ′

can be written in terms of Rj
0 and Rjk

0 using Dietrich’s
relation twice

Rk
1(ξ, ξ′) =

R0
0(ξ, ξ′) − uk(ξ)uk(ξ′)Rk

0(ξ, ξ′)
vk(ξ)vk(ξ′)

(37)

Rjk
1 (ξ, ξ′) =

Rj
0(ξ, ξ

′) − uk(ξ)uk(ξ′)Rjk
0 (ξ, ξ′)

vk(ξ)vk(ξ′)
. (38)

The calculation of the Hamiltonian overlap using this
method is rather slow. In order to speed up the evaluation
of the residuum integrals, we have written the Hamilto-
nian overlap Hξξ′ in the form

Hξξ′ =
1
2π

∫ 2π

0

dϕ
[
Fϕ

1

(
ξ, ξ

′) − Fϕ
2

(
ξ, ξ

′)]
(39)

where

Fϕ
1 (ξ, ξ

′
) = 2

∑

j

(εj − G/2) vj(ξ)vj

(
ξ
′)

eiϕ/2

×
∏

k �=j

(e−iϕ/2uk(ξ)uk(ξ
′
) + eiϕ/2vk(ξ)vk(ξ

′
)) (40)

Fϕ
2 (ξ, ξ

′
) = G

∑

ij

ui(ξ
′
)vi(ξ)uj(ξ)vj(ξ

′
)

×
∏

k �=ij

(e−iϕ/2uk(ξ)uk(ξ′) + eiϕ/2vk(ξ)vk(ξ′)). (41)

In the actual calculations we used these expressions to
evaluate Hξξ′ instead of equations (37, 38), the inte-
grals (39) are evaluated by fast Fourier routines.
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